Friday, February 3, 2012

Completed Staff Work

Completed Staff Work (CSW)

1. PENDAHULUAN

Setiap pemangku pekerjaan (job holder) bertanggungjawab pada pekerjaan spesifiknya dan diharapkan mampu berkontribusi dalam pencapaian target unit kerjanya. Dalam melaksanakan tugas-tugas (duties), seorang pemangku pekerjaan dalam posisi staf belum dituntut mengembangkan dan memimpin anakbuah karena ia belum mempunyai anakbuah, tetapi tetap dituntut kualitas individual yang unggul agar kinerja yang dihasilkan dapat memenuhi target kerja bahkan lebih tinggi dari standar yang ditetapkan. Untuk itu ia harus memiliki kompetensi yang tepat terdiri dari pengetahuan, keterampilan dan sikap serta perilaku yang sesuai dengan pekerjaannya.

Seorang pemangku pekerjaan memiliki pihak yang dilayani yakni atasan langsung dan mitra kerja pada proses berikutnya. Ia akan mempertanggungjawabkan pekerjaannya pada atasan langsungnya. Seorang staf diharapkan mampu memberikan dukungan (to support) kepada atasannya sehingga memungkinkan atasan mengambil keputusan secara tepat dan cepat. Kehadiran staf yang kurang dapat diandalkan, alih-alih membantu meringankan beban kerja atasannya sebaliknya menimbulkan kekecewaan dan bahkan memberikan pengaruh pada hubungan kerja atas – bawah atau pada hasil kerja kelompok. Dalam hal ini perlu dipahami apa yang menjadi tanggung jawab dan ruang lingkup pekerjaan atasan serta cara bagaimana membantu atasan dan sebaliknya bagaimana atasan dapat memperlancar pekerjaan anakbuahnya.

Sebagai seorang pengikut (follower), seorang staf diharapkan segera mengenali proses bisnis di lingkungan kerjanya dan bagaimana memposisikan dirinya untuk berkontribusi secara tepat pada waktu dan cara yang sesuai. Agar terjalin hubungan kerja yang harmonis, masing-masing atasan maupun anakbuah diharapkan memahami target kerja atasan dan mitra kerjanya. Bagaimana sesungguhnya staf menampilkan kinerja terbaiknya, maka berikut penjelasan tahap per tahap.

2. PEKERJAAN dan TANGGUNGJAWAB

Terdapat sejumlah tugas (tasks) di dalam organisasi, dimana tugas tersebut dikelompokan menjadi suatu pekerjaan tertentu (job). Setiap pekerjaan menuntut kompetensi tertentu yang terdiri dari pengetahuan, keterampilan, sikap dan perilaku untuk memberikan unjuk kerja optimal. Sebagai contoh, seorang staf administrasi mempunyai pekerjaan pengadministrasian dokumen. Dalam pengadministrasian dokumen, ia harus melakukan tugas pensortiran, pengklasifikasian surat, pemberian kode, penempatan pada binder/folder, dan sebagainya. Atas tugas-tugas atau aktivitas yang dilakukan setidaknya dituntut penguasaan tata kelola dokumen, keterampilan penggunaan program Office, penyimpanan dokumen, pemahaman akan pengkodean dan sebagainya. Dalam hal sikap kerja, seorang staf administrasi dituntut memiliki ketelitian. Seorang staf disebut tidak kompeten ketika ia tidak mampun menampilka kinerjanya yang terlihat dari proses maupun hasil akhir.

Seorang pengampu pekerjaan memiliki keleluasaan untuk mengatur jadwal penyelesaian pekerjaan dari sangat leluasa hingga kurang. Semakin tinggi derajat keleluasaan pengaturan dan independensi penjadwalan dan pelaksanaan, maka pemangku pekerjaan memperoleh otonomi. Namun, ketika ia terikat pada penentu jadwal, maka ia menjadi tergantung pada pihak lain. Ruang lingkup tanggungjawab pemangku pekerjaan dibatasi sesuai dengan yang digariskan pada uraian pekerjaan. Apabila pemangku pekerjaan tidak mempunyai anak buah, maka tanggungjawabnya terbatas pada pekerjaan spesifik.

3. PENGERTIAN COMPLETED STAFF WORK (CSW)

CSW merupakan penyampaian staf kepada atasan atau pihak yang dilayani mengenai permasalahan dan rekomendasi solusi terlepas dari penerima menerima atau menolak rekomendasi solusi yang diajukan. Jadi CSW adalah penyampaian alternatif tetapi belum berupa tindakan karena anak buah tidak berkewenangan memutuskan. Ruang lingkup CSW dapat berbentuk solusi dari anak buah kepada atasan atau antara staf secara horisontal. Anak buah yang hanya menyajikan masalah, ibarat koki yang memberikan makanan dalam kondisi setengah jadi, dan membiarkan konsumennya meracik sendiri. Mengapa diperlukan CSW ? Atasan perlu memperoleh masukan sebagai bahan menetapkan keputusan dan keberadaan anakbuah adalah mendukung atasan. Atasan memiliki keterbatasan waktu atasan untuk menetelusuri dukungan data secara detil sehingga aktivitas ini dikerjakan oleh anak buah. CSW akan menjawab apakah keberadaan anak buah memang dapat diandalkan, dipercaya, kompeten dan memahami beban kerja atasan.

Agar lebih memahami CSW, mari kita gunakan ilustrasi atasan yang mendadak ditugaskan ke luar kota dengan moda transportasi yang variatif tersebut. Kondisi seperti apa yang membuat staf dinilai kurang kompeten ? Yakni bilamana ia datang kepada atasan yang sibuk dan hanya memberikan informasi sepotong demi sepotong, sejauh tahapan instruksi atasan.

Atasan yang terperangkap dalam kepadatan aktivitas, akan cenderung kesal karena harus mendikte anak buahnya. Boleh jadi atasan yang kesal kemudian mengerjakan sendiri pekerjaan yang sesungguhnya dapat dilaksanakan oleh anak buahnya. Ada dua kemungkinan penyebabnya yakni dari sisi atasan yang tidak membimbing anak buahnya dan sebaliknya anak buah tidak belajar memahami harapan atasan.

Dari ilustrasi kasus di atas, anak buah diharapkan menganalisis situasi kegentingan yang dihadapi atasan. Tugas mendadak ke luar kota, dan atasan dalam posisi masih memimpin rapat merupakan situasi genting. Langkah selanjutnya adalah memahami permasalahan dan target. Kasus di atas adalah atasan harus menuju ke lokasi dimana atasan tidak dapat meninggalkan rapat yang sedang dipimpinnya, namun di lain pihak atasan harus berangkat menggunakan pesawat terbang dan tiba di lokasi dengan segera.

Anak buah kemudian berusaha mencari solusi yang memungkinkan atasan dapat memimpin rapat dan terbang ke kota tujuan. Ketika instruksi diterima, ia harus mengkombinasikan antara situasi genting dan target, kemudian mengumpulkan informasi berbagai alternatif maskapai penerbangan menuju kota tujuan dan jam keberangkatan dari perkiraan akhir rapat di tambah dengan waktu tempuh menuju bandara.

Anak buah yang telah mampu melakukan CSW, akan menyajikan alternatif jadwal penerbangan dari berbagai maskapai menuju kota tujuan tersebut. Kemudian, mempresentasikan moda transportasi darat yang paling tepat untuk mencapai lokasi (site), memberikan alternatif administrasi perjalanan dan dokumen yang dibutuhkan. Keseluruhan informasi kemudian bergegas disampaikan, sehingga atasan dapat menetapkan pilihannya. Penyampaian dengan tampilan yang terklasifikasi, akan sangat memudahkan atasan mempelajari situasi dengan cepat.

Apa yang disebut UCSW ? Atas kasus di atas, ketika anak buah hanya menyerahkan sebagian informasi dan selanjutnya menunggu petunjuk berikut hingga beberapa kali, yang akhirnya membuyarkan konsentrasi atasan di tengah rapat yang sedang dipimpinnya. CSW menjadi perlu ketika dikembalikan pada esensi keberadaan anak buah. Hubungan kerja yang lancar antara atasan dan anak buah tercapai ketika anak buah telah mampu mengenal pekerjaan atasan dan pribadinya.

4. TAHAPAN CSW

Implementasi dari tahapan CSW terdiri dari :

a. Identifikasi Masalah

b. Identifikasi dan evaluasi Solusi yang memungkinkan

c. Merekomendasi satu solusi yang terbaik

d. Menyiapkan material/bahan untuk implementasi rekomendasi (setelah disetujui)

a. Identifikasi Masalah

Langkah yang paling baik adalah memahami atasan dari sisi tanggung jawab, tekanan pekerjaan, apa yang disukai dan tidak disukai serta gaya bekerja. Apakah atasan lebih menyukai detil atau hanya pokok-pokok kesimpulan. Identifikasi masalah berawal dari analisis derajat kepentingan dan situasi mendesak. Belajar dari ilustrasi kasus di atas, maka masalah atasan adalah penting dan mendesak, karena atasan harus segera berangkat ke luar kota.

Implementasi CSW akan lebih berstruktur bilamana kita mengingat prinsip 5 W+H. What - Apa masalah , Who – Siapa yang terlibat dan berapa banyak, Where – Dimana permasalahan, When - Kapan dan How - Bagaimana. Pemahaman proses bisnis, dan pengetahuan dari hasil belajar secara mandiri akan sangat membantu melaksanakan CSW. Anak buah diharapkan berlatih menggali masalah, mempelajari proses bisnis, lingkup pekerjaan dirinya dan orang lain.

b. Identifikasi dan evaluasi solusi yang memungkinkan

Sejauh mana atasan mengimplementasikan CSW tergantung dari situasi. Terdapat kemungkinan, atasan hanya menerapkan sampai dengan tahap kedua yakni identifikasi dan evaluasi solusi yang memungkinkan. Kecakapan anak buah dan sejauh mana mampu menghimpun informasi akan dapat dinilai oleh atasan. Evaluasi solusi yang memungkinkan berarti penyajian sejumlah alternatif disertai (lebih baik) konswekensinya.

Terkait kasus di atas, anak buah akan menyampaikan alternatif maskapai menuju ke kota tujuan terdiri dari Maskapai A, B, C dalam beragam jam keberangkatan. Kemudian ia akan memberikan konsekwensi seperti : kalau dengan maskapai A, diragukan berangkat tepat waktu sehingga kecenderungan menghadapi kesulitan pada perjalanan lanjutan. Bilamana memakai maskapai B, diragukan berhasil berangkat karena masih dalam daftar tunggu (waiting list). Apabila menggunakan maskapai C berhasil memperoleh seat, namun rapat harus diselesaikan lebih cepat karena hanya terdapat toleransi waktu perjalanan menuju bandara kurang dari 2 jam dan hal tersebut waktu yang sangat singkat. Bilamana pengklasifikasian alternatif dilakukan dengan jelas, maka memudahkan atasan memberikan tanda (mark) mana yang akan ia pilih walaupun dalam posisi rapat.

c. Merekomendasi satu solusi yang terbaik

Atasan yang mengenal anak buahnya dengan baik, barangkali menginginkan lebih dengan meminta untuk menyajikan satu solusi terbaik sehingga ia hanya tinggal menyetujui atau menolak atau beralih ke solusi lain diluar yang diajukan. Dalam hal ini tidak perlu kecewa, karena domain CSW terletak pada atasan sebagai pengambil keputusan.

Tanggung jawab anak buah memang sebatas mengalirkan informasi. Tetapi, ketika atasan dan anak buah sudah saling memahami tekanan pekerjaan masing-masing, maka pilihan anak buah juga menjadi pilihan atasan.

Anak buah hanya merekomendasikan solusi, ia tidak mempunyai hak untuk mengimplementasikan solusi sampai atasannya menetapkan pilihan solusi. Kalau atasan menerima, maka beberapa aktivitas akan terjadi seperti : menyiapkan administrasi perjalananan dinas, bahan dan berbagai material.

Anak buah yang berpikiran maju mungkin beranggapan akan lebih baik bilamana ia mempersiapkan dahulu. Namun, boleh jadi apa yang dilakukan akan sia-sia, kecuali kalau sudah relatif mengetahui apa yang dikehendaki atasan.

d. Menyiapkan material/bahan untuk implementasi rekomendasi (setelah disetujui)

Contoh situasi : Ati menghabiskan 1.5 jam menyiapkan hingga tahap tiga, dan sekitar 4 jam untuk sampai pada tahap 4 yang berakhir pada penolakan alternatif atau tindakan yang dilakukan. Ati sudah mengerahkan tenaga, pikiran dan waktu yang berujung pada kekecewaan. Mengapa hal ini terjadi ? Terdapat kesalahan di kedua belah pihak yakni atasan tidak menginformasikan secara jelas sampai pada tahap mana CSW diselesaikan dan kriteria pendekatannya. Sebaliknya anak buah tidak terlalu mengenal atasan dan masalah sehingga menyajikan solusi yang tidak dikehendaki atasan.

Sisi lain adalah kebiasaan buruk atasan yang beralih fokus dan instruksi. Artinya, walaupun identifikasi solusi dan material telah benar, ia kemudian tidak menggunakan. Bilamana demikian, maka atasan menjadi sumber pemborosan waktu dan tenaga.

Read more.....

Control Room Designing

Control Room Designing

Source : http://www.hse.gov.uk/comah/sragtech/techmeascontrol.htm

General principles

There are two major aspects of control room design that should be taken into account in the Safety Report these are:

· the suitability of the structure of the control room to withstand possible major hazards events; and

· the layout of control rooms and the arrangement of panels, VDUs etc to ensure effective ergonomic operation of the plant in normal circumstances and in an emergency.

Control room structure

For large plants, control rooms are likely to be situated in separate buildings away from the process plant which they serve. For medium or small plants control rooms may be within the plant building or control panels may be located local to the plant. Whatever the location, control rooms should be designed to ensure that the risks to the occupants of the control room are within acceptable limits and that it is suitable for the purposes of maintaining plant control, should the emergency response plan require it, following any foreseeable, undesirable event within the plant.

Events that may affect the control room are:

· Vapour Cloud Explosions (VCEs)

· Boiling Liquid Expanding Vapour Explosions (BLEVEs)

· Pressure bursts

· Exothermic reactions

· Toxic gas releases

· Fires, including pool fires, jet fires, flash fires and fire balls.

The threat from explosions and pressure bursts should be considered in the structural design of control building. A methodology for this is presented in the recent CIA/CISHEC guidance CIA Guidance for the location and design of occupied building on chemical manufacturing sites. This considers the vulnerability of the building to possible overpressures associated with particular events. Buildings should be designed to withstand an overpressure that will ensure that risks to individuals within the building are below acceptable limits. Particular attention should be given to the provision of windows, the presence of heavy equipment on roofs (e.g. air conditioners) and the ability of internal fixtures to withstand the building shaking. If windows are present, consideration should be given to the use of laminated or polycarbonate glass, to prevent serious injury to occupiers of the control room in the event of an overpressure. ALARP principles should be applied in these considerations and cost benefit used to determine if additional measures should be applied.

In consideration of toxic gas releases the control room should provide a safe haven for its occupants. This will include arranging that the building is adequately sealed to prevent ingress of gases to levels of concentration that will affect the health and thereby the ability of the operators to maintain control of the plant. Careful consideration of the building ventilation system is required to ensure that air intakes are situated away from areas that may be affected or to arrange that there is no air intake during an incident, preferably by closure of an automatic valve linked to a gas analyser.

Measures for protection from fires should ensure the control room will withstand thermal radiation effects without collapse and that smoke ingress is controlled. Materials of construction should be fire resistant for the duration of any possible fire event. Smoke ingress may be controlled in a similar manner to toxic gas ingress.

Each of these methodologies should be applied to control rooms within buildings as well as separate control buildings. Control panels on the plant itself cannot be so easily be protected, therefore diversity and redundancy should be applied to ensure that plant control can be maintained in an emergency. Risk Assessments should be undertaken to demonstrate that primary and secondary (domino) risks are within acceptable limits.

Human factors/ergonomics

Operators should be able to demonstrate that appropriate human factors considerations have been given to the design, commissioning, and operation of control rooms under both normal and abnormal plant operating conditions to reduce the frequency of human error due to control room deficiencies.

It is vitally important that a control room and its operators are considered as a whole system and not in isolation of each other. For example a well designed control room for use by 4 operators is dangerous when staffed by 3 operators. Similarly, the best-trained operators cannot guarantee high reliability in a poorly designed control room.

Factors to be taken in account are included on the following paragraphs.

Environmental issues

Layout

· Control room dimensions should take into account the 5th and 95th percentile user.

· The design of the control room should be derived from an appropriate task analysis method, such as link analysis or hierarchical task analysis.

· Emergency exits should accommodate egress by the 99th percentile user.

· Access and egress should be considered for disabled operators.

· Adequate access should be provided throughout the control room. However, the layout should discourage flow from general circulation areas to ensure that necessary lines of sight are not obscured.

· If there are a number of control rooms operating on the same system they should adopt similar layouts to ensure consistency.

· Operational links between control room operators, such as communications and lines of site should be considered during the design stage.

· The layout should not hinder verbal and non-verbal communication and should facilitate team working.

· The layout of the control room should reflect the allocation of responsibility and the requirements for supervision.

· The layout should be effective under high and low staffing levels.

· Circulation of all personal should be achieved with the minimum of disruption to operators.

· Where supervisory positions will increase the amount of personnel circulation, it is recommended that these positions are located close to main entrances.

· Distances between workstations should mean that operators are not sitting within each other’s ‘intimate zones’. As a guide the minimum spacing distance should be between 300 - 700 mm.

Maintenance

· Adequate access should be provided so that inadvertent operation of equipment during maintenance is not possible.

· Behind panel equipment should be appropriately coded to reduce the potential for human error.

Thermal environment

· Temperature and airflow should be adjustable. As a guide, ‘comfortable’ temperature for office work should be between 18.3°C and 20.0°C with airflow between 0.11 and 0.15 m/s.

Visual environment

Lighting should be such that it does not create veiling reflections on VDUs or other reflective surfaces that require monitoring.

The type of lighting should be adequate for the task. i.e. for office work a lux (lux is the unit of illuminance - measured using a light meter at the work surface) figure of between 500 - 800 is suggested.

There should be no perceptible flicker from strip lighting.

It is desirable to provide adjustable lighting for control rooms that are manned 24 hours a day. During night-time operation lighting is often dimmed.

Windows in control rooms should not cause veiling reflections on reflective surfaces. Adequate means of blocking out direct sunlight should be provided.

Auditory environment

The average noise level within the control room shall not exceed 85 dB(A) during the length of the working day.

For office work a noise level below 40 dB(A) is not desirable as it can cause interference between operators.

Prolonged, very low or very high frequency noises should be avoided.

Noise levels should not interfere with communications, warning signals, mental performance (i.e. be distracting).

Man Machine Interface (MMI)

For mental workload, conditions of over and under-arousal should be avoided. The duration of tasks that have an associated low or high level of mental workload should be limited. Both these extremes will increase the likelihood of human error affecting the system. The design of the MMI should be based on a full Task Analysis.

An interface should provide the operator with the general following information:

· After initiating an action within a system the operator should be clearly informed of the result of their action.

· If there is a delay in the system that prevents the operator from being informed of the result of his/her action, the system should inform the operator of this fact.

· If an action is made in error then it should be possible to reverse such an action where it would not be detrimental to plant safety to do so.

· The system should inform the operator of any deviations from safe operating levels.

Alarms

· All employees and contractors on site should know what each alarm means and what the required response is, if the cause of the alarm has the potential to affect them.

· An alarm should reset automatically if the fault that generated it is rectified.

· Alarm messages should be presented in a standard format, based upon existing conventions.

· Alarm messages should clearly inform the operator of the reason for the alarm.

· Following an alarm response required by the operator should be clear.

· The coding of alarms should not be based purely on colour, as colour blind operators will be unable to recognise what the alarm indicates.

· Alarm signals should be at least 10 dB(A) over the background noise of the control room.

· Alarms should not prevent effective communication within the control room.

· An alarm log should be provided to for diagnostic purposes.

· The design of the alarm system should prevent masking and flooding of alarms. Masking is where one alarm noise masks a similar sounding alarm preventing the operator from detecting the signal. Flooding happens when a system alarms which has a ‘knock on’ effect on other related systems, the result of which is the triggering of myriad other alarms - flooding the control room with sound.

Coding techniques

· Coding should follow international conventions. Arbitrary coding by operators can actually propagate, rather than mitigate, human error if not carried out correctly.

· Coding should be consistent across plant.

· Coding should be used appropriately.

· Example methods of coding are:

o Colour

o Flash

o Brightness

o Inverse video/highlighting

o Sound frequency

o Sound type

o Shape 2D/3D

o Symbols

· Coding should be used redundantly where colour is one of the coding methods.

Designing displays

Text

· The language used should always be capable of being easily understood by the operator.

· Active rather than passive language should be used.

· Text should be left justified.

· Sans serif fonts should be used as these have been found to be the most legible. An example of a sans serif font is Arial.

Labels

· Labelling should be used consistently across plant.

· Labels should be used appropriately.

· The relationship between labels and the equipment they refer to should be clear.

· Labels should be easily read.

· Standard abbreviations should be used where abbreviations are required.

Display devices

· Display devices should be appropriate for the type of information they are presenting.

· Display devices should be grouped logically to improve signal detection. It is recommended that formal task analysis methods be performed to determine the optimum arrangement for displays and their associated controls.

· The relationship between a control and its associated display should be obvious.

· The operator should be able to easily understand display feedback.

· The response to this feedback should be obvious, wherever possible.

· The control method provided for navigation around displays should be appropriate for the task.

Graphics

· Appropriate presentation methods should be used for information. A simple guide is presented below:

Method

Advantage

Disadvantage

Numeric

· Accurate quantitative information

· Quickly read

· Cannot illustrate rate of change or approach to limit

· Rapidly changing data is unreadable

· Difficult to locate individual data items if presented in a list or table.

Bar charts/analogue dials

· Easy to check whether data is within limits

· Possible to mark alarm limits

· Displays rate of change well.

· Easily compared to other similarly presented data.

· Provides at a glance appreciation of operating conditions

· Movement can potentially distract operators.

· Slow read time.

· Inaccurate if numerical value has to be derived.

Pictorial displays

· Ideal for showing plant configurations.

· Can improve operator situational awareness of plant.

· Operator’s mental model of the plant may differ from the mimic.

· Can be very difficult to learn.

Trend displays

· Ideal for presenting continuously changing information.

· Presents rate of change in an easily understood format.

· Good for comparing data plots

· Provides historical data over time

· Inaccurate if numerical value has to be derived.

· Only four parameters can be displayed

· Mimics should follow current conventions for symbols etc.

· Mimics should be user tested prior installation to ensure that they are compatible with the end users mental model of the plant.

Controls

· Controls should be appropriate for their use. A table is presented below which provides guidance on the most appropriate controls for different tasks:

Control operation

Push- button

Foot- switch

Toggle switch

Rocker switch

Rotary selector

Knob

Slider

Joystick

Thumb- wheel

Crank

Hand- wheel

Lever

Pedal (pivot)

Pedal (thrust)

Discrete - Activate on/off

G

G

VG

VG

P

·

P

·

·

·

·

·

·

Discrete - Select three states

A

·

F

P

VG

G

Discrete - Select multistate

A

·

P

VG

VG

F

G

Continuous - Set/adjust

VG

G

F

VG

G

G

Continuous - Control/track

Exert Force

Speed of operation

VG

F

VG

VG

F

F

G

G

P

Inherent visual feedback

P

· Controls should conform to the user’s stereotype.

· Controls should not obscure labels or displays.

· Layout of controls should be compatible with anthropometric guidelines.

Anthropometry

Reach

· Control desk/panels should conform to reach distances for the 5th percentile operator.

Seating

· Seating should be anthropometrically sound and should be usable by both 5th and 95th percentile operators.

· Adjustment should be provided to allow the operator set up the chair to a configuration that is comfortable.

· Seating should not promote a slumped posture.

Posture

· The workstation should be designed so that it allows the operator to regularly change their posture or move around the room. This should not however, be during primary control duties or during an emergency scenario.

International Codes of Practice

· CIA Guidance for the location and design of occupied building on chemical manufacturing sites, CIA/CISHEC, 1998.

· ‘Process plant hazard and control building design: An approach to categorisation’, CIA, 1990.

· API RP 752 Management of hazards associated with location of process plant buildings, American Petroleum Institute, 1995.

· HS(G)176 The storage of flammable liquids in tanks, HSE, 1998. Paragraph 191 provides guidance on the requirements for communications between the control and loading/off-loading operations.

· HS(G)28 Safety advice for bulk chlorine installations, HSE, 1999. Paragraph 111 recommends that well instrumented plants for bulk chlorine installations should have a continuously manned control room. Paragraph 192 recommends that emergency instructions should be provided on plant and in the main control room. Paragraph 256 recommends that emergency alarms and sensors giving a visual display of chlorine concentrations in air should be provided on plant and in the main control room.

· HS(G)30 Storage of anhydrous ammonia under pressure in the UK : spherical and cylindrical vessels, HSE, 1986. Paragraph 88 recommends that pressure and liquid levels with storage tanks should be transmitted to control rooms.

· HS(G)40 Safe handling of chlorine from drums and cylinders, HSE, 1999. Paragraph 59 recommends that remotely operated shut-off valves and manual overrides should be located outside the control room. Paragraph 82 recommends that emergency instructions should be provided on plant and in the main control room. Paragraph 115 recommends that emergency alarms and sensors giving a visual display of chlorine concentrations in air should be provided on plant and in the main control room.

· HS(G)186 The bulk transfer of dangerous liquids and gases between ship and shore, HSE, 1999. Paragraph 197 recommends operating points for pumps should be located both in the control room and on the berth. Paragraph 257 considers the advantages and disadvantages of controlling cargo transfer from on plant or the main control room.

· CHIS 2, ’Emergency isolation of process plant in the chemical industry’, HSE, 1999. The Guidance recommends that isolation should be affected from the control room, with alarms provided on plant and in the control room.

· L26, ‘Display screen equipment work. Health and Safety (Display Screen Equipment) Regulations 1992’, HSE, 1992. Paragraphs 40 to 48 give recommendations on working environment, such as lighting etc.

· BS EN 894-1 : 1997 Safety of machinery. Ergonomics requirements for the design of displays and control actuators. Part 1. General principals for human interactions with displays and control actuators, British Standards Institution.

· BS EN 894-2 : 1997 Safety of machinery. Ergonomics requirements for the design of displays and control actuators. Part 2. Displays, British Standards Institution.

· BS 3693 : 1992 Recommendations for the design of scales and indexes on analogue indicating instruments’, British Standards Institution.

· BS EN 60073 : 1997 Basic and safety principles for man-machine interface, marking and identification. Coding principles for indication devices and actuators, British Standards Institution.

· BS 7445 : 1991 Description and measurement of environmental noise, Parts 1, 2, and 3, British Standards Institution.

· Defence Standard 00-25, ‘Human factors for designers of equipment. Part 7. Visual displays’, Issue 1, MoD, 1986.

· EPRI - NP3659, Kincade, R. G. and Anderson, J., ‘Human factors guide for nuclear power plant control room development’, Essex Corporation, 1984.

· ISO/DIS 11064-3 (Draft), ‘Ergonomic design of control centres’, Parts 1, 2, and 3, 1997.

· NUREG/CR-5908 BNL-NUREG-52333, ‘Advanced human systems interface design review guidance’, U.S. Nuclear Regulatory Commission, Washington DC, USA, 1994.

· NUREG-0700, ‘Human-system interface design review guidelines’, Revision 1, U.S. Nuclear Regulatory Commission, Washington DC, USA, 1996.

Further reading

Mecklenburgh, J.C., ‘Process plant layout’, George Godwin, 1985.

Ball, P.W. Ed, ‘The guide to reducing human error in process operations’, The Human Factors In Reliability Group, The SRD Association, 1991.

Pheasant, S., ‘Bodyspace - anthropometry, ergonomics and the design of work’, Taylor & Francis, London, 1996.

Oborne, D. J., ‘Ergonomics at work’, Second Edition, Wiley, New York, 1989.

Corlett, E. N. and Clark, T. S., ‘The ergonomics of workspaces and machines - A design manual’, Second Edition, Taylor & Francis, London, 1995.

Read more.....
 




© 2007 Process Engineer - The Way Of Live | Linked to Home Bussiness | Location at : Kota Gemolong